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Abstract
Root cause analysis for retail e-commerce inventory management
diverts significant technical resources from strategic work. We
present RADAR, a framework that enhances and scales human
analysis capabilities while complementing traditional attribution
systems that, according to domain experts, typically cover only
about a quarter of needed insights without deeper causal reasoning.
RADAR employs specialized LLM agents working with expert-
validated preprocessed data, addressing context limitations, reduc-
ing hallucination rates from 42% to 3%, and managing complex
technical instruction following. Evaluation across multiple product
cases from multiple global marketplaces of a retail e-commerce
demonstrates that RADAR not only automates analyses but out-
performs human experts in quality (4.8/5 vs. 2.0/5), with notable
improvements in information structure, data quality, and commu-
nication effectiveness. This 85-95% efficiency gain allows technical
teams to refocus on strategic initiatives while mitigating human
interpretation errors and maintaining 91% alignment with expert
root cause assessments. Our approach evolved from a single-agent
to multi-agent design with novel structured data processing tech-
niques that generalize beyond supply chain applications.
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1 Introduction
Root cause analysis (RCA) in supply chain management has evolved
from traditional methods like 5-Why analysis [2] to advanced sta-
tistical and machine learning approaches that enable processing of
large data volumes [1]. The integration of time series methodologies
and multivariate analysis has enhanced understanding of supply
chain disruptions [4], while recent developments in Large Language
Models (LLMs) have transformed RCA by effectively combining
unstructured data analysis with causal inference techniques [3].

RCA in supply chain management diverts critical technical re-
sources from strategic initiatives. When out-of-stock (OOS) issues
arise, rapidly identifying underlying causes becomes imperative
to minimize customer experience impacts and revenue loss. Tra-
ditional approaches require product managers and business in-
telligence engineers to spend days to weeks executing complex
queries across disparate data sources, analyzing correlations, and
generating comprehensive reports. Out-of-stock events critically
impact e-commerce customer experiences and purchase journeys.
RADAR’s framework identifies inventory disruption patterns, en-
abling proactive adjustments to maintain superior customer experi-
ence during supply chain volatility. Its causal insights help prevent
stockouts that drive customers to competitors. Unlike traditional
RCA approaches, RADAR’s rapid analysis enables high-fidelity
system adjustments, preserving customer experience quality and
conversion rates. This adaptive efficiency distinguishes successful
e-commerce platforms from their competitors. As one supply chain
leader observed: "Before RADAR, finding root causes took days and
multiple teams. Now we can quickly identify issues before they
impact customers."

Existing attribution systems—structured analytical frameworks
that identify and quantify supply chain issues through predefined
categories (which we’ll refer to as "bridges")—provide valuable
high-level insights but cannot deliver the deeper analysis required
for comprehensive understanding. These attribution bridges break
down complex supply chain processes into a hierarchical structure
of causes and effects but are limited in their ability to identify
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interconnections between factors, and may miss some high impact
factors that maybe lower in the hierarchy.

RADAR (Root cause Analysis via Data Analysis and Reasoning)
complements existing attribution systems by providing deeper anal-
ysis that connects insights across disparate data sources, addressing
four key limitations:

• Linear aggregation simplification: Traditional systems
assumemutually exclusive issues, whereas RADAR identifies
interconnected factors in complex supply chains

• Inflexible prioritization: Traditional systems use a fixed
attribution order, while RADAR dynamically prioritizes fac-
tors based on specific scenarios

• Short-term focus: Existing approaches emphasize immedi-
ate execution issues over strategic planning needs

• Symptom focus: As one product manager observed, "Cur-
rent systems tell us what is happening, but they don’t say
why it’s happening"

1.1 Key Contributions
RADAR is a multi-agent framework that introduces several key in-
novations. It features a hybrid reasoning architecture that balances
deterministic preprocessing with LLM reasoning, significantly re-
ducing hallucination rates. The system employs context-aware
agent specialization using domain-specific strategies to maintain co-
herence across diverse data sets. Unlike general multi-agent frame-
works (AutoGen, LangChain), RADAR specializes in structured
data reasoning with domain-specific preprocessing pipelines and
validation mechanisms tailored for supply chain complexity. Our
research makes several contributions:

• Novel techniques for LLM-based analysis of complex struc-
tured supply chain data with wider applicability to other
domains requiring structured data reasoning

• An extensible multi-agent LLM architecture addressing con-
text window limitations through domain specialization

• A systematic approach to managing the complexity between
LLM reasoning and deterministic preprocessing for struc-
tured data analysis

• A comprehensive evaluation framework measuring system
effectiveness across multiple dimensions with comparison
against both human experts and simpler automated approaches

• Empirical evidence demonstrating an 85-95% efficiency im-
provement while outperforming human analyses in quality

2 Methodology
2.1 Data Sources and Preprocessing
RADAR integrates over 60 data tables spanning five categories
(Inventory, Demand, Supply Planning, Order Execution, and Avail-
ability), reflecting the flow from forecasting to customer availability.
We collected benchmarking data at category, product, and supplier
levels.

Our preprocessing framework implements specific techniques
for structured data transformation that can generalize beyond sup-
ply chain applications. These preprocessing techniques show po-
tential for other structured data domains, though domain-specific
validation would be required:

Figure 1: RADAR System Architecture: A hybrid system com-
bining traditional software engineering with LLM capabili-
ties through specialized agents and synthesis.

• Temporal alignment: Aligning time-series data across dis-
parate systems with different reporting cadences

• Signal extraction: Using statistical techniques to identify
patterns in noisy structured data

• Contextual compression: Maintaining semantic relation-
ships while reducing dimensionality

• Relational reconstruction: Rebuilding entity relationships
across fragmented tables

• Hierarchical summarization: Creating multi-level aggre-
gations while preserving detail access

Our initial approach used LLM-generated SQL and Python code
for both data collection and analysis. However, we observed that
this approach led to inconsistent results, query inefficiency, and
frequent syntax errors. The LLMs often "reinvented the wheel" for
common operations and analyzed data in rudimentary ways that
missed complex patterns. This led us to adopt a "write once, perfect
thoroughly, and re-use" approach, resulting in over 50,000 lines of
expert-vetted preprocessing code iteratively improved through hu-
man feedback loops and exhaustive testing. This approach ensures
consistent, high-quality inputs to the LLM analysis pipeline.
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2.2 System Architecture
RADAR’s hybrid system allows users to initiate analyses via a web
dashboard by specifying product, marketplace, and date range, de-
livering reports within two hours and enabling interactive querying
afterward.

2.2.1 Evolution from Single Agent to Multi-Agent Architecture. Our
initial design used a single LLM agent to analyze all supply chain
aspects simultaneously. However, this approach quickly ran into
limitations:

• Context window constraints: The combined instructions
(> 7, 500 lines) and necessary data far exceeded available
context windows

• Role confusion: The LLM struggled to maintain specialized
knowledge across multiple domains simultaneously

• Reasoning consistency: Analysis depth varied significantly
across different supply chain aspects

• Hallucination amplification: Errors in one domain propa-
gated to others without opportunity for correction

This led us to develop our current multi-agent architecture,
which decomposes analysis by domain expertise. Each agent re-
ceives only domain-relevant data and instructions, focusing the
LLM’s reasoning on a manageable subset of the full analysis task.
Comparative tests showed this approach reduced hallucinations by
73% compared to the single-agent design, based on human evalua-
tion against ground truth data.

2.2.2 Specialized Agent Architecture. The system consists of five
specialized agents:

(1) Attribution Analysis Agent: Examines supply chain attri-
bution metrics and patterns from standard reports

(2) Supplier Analysis Agent: Evaluates supplier performance
metrics including lead times and confirmation rates

(3) Demand Analysis Agent: Analyzes demand signals, fore-
cast accuracy, and unexpected pattern shifts

(4) Inventory Analysis Agent: Studies planning metrics and
differentiates between planning and execution issues

(5) Economics Analysis Agent: Assesses inventory planning
parameters and economic tradeoffs

Each agent processes domain-specific data through Python pre-
processors, analyzes relevant metrics, generates structured insights,
and documents evidence trails for transparency. The combined
prompt engineering for all five agents exceeds 4,000 lines of in-
structions, capturing analytical frameworks, business heuristics,
and domain expertise of human specialists.

Each agent leverages specialized function-calling capabilities for
operations like time-series analysis and statistical testing. These
tools prevent agents from "reinventing the wheel" for common
calculations, improving decision quality while focusing the LLM
on interpretation and reasoning.

Beyond architectural changes, our multi-agent design addresses
hallucination risks through:

• Agent memory via comprehensive logging of analytical steps
• Precisely relevant data tailored to each agent’s domain
• Data-grounded responses with explicit acknowledgment of
information gaps

Table 1: Task Allocation Between Code and LLMs

Task Type Code LLM

Data transformation ✓
Statistical calculations ✓
Pattern detection ✓
Multi-factor reasoning ✓
Domain-specific heuristics ✓ ✓
Causal inference ✓
Report generation ✓

• Modular prompt structure preserving critical instructions
during updates

These refinements reduced hallucinations from 42% to 3% while
maintaining reasoning consistency. RADAR employs DeepSeek for
the single analysis agents and Claude Sonnet for the critic and
aggregator agent.

2.2.3 Balancing LLM Reasoning with Deterministic Preprocessing.
We developed a systematic approach to dividing work between
LLMs and deterministic code based on comparative advantage:

This approach reduced hallucination rates from 42% in our early
prototypes to just 3% in the current system while maintaining the
LLM’s ability to perform complex causal reasoning across different
supply chain factors.

2.2.4 Automatic SystemDiagnosis. To systematically improve RADAR,
we developed a meta-RCA diagnostic system that traces backward
from outputs to identify source components, classifies root causes
(e.g., prompt gaps, instruction failures), and generates targeted fixes
while preserving functionality—significantly accelerating system
improvement compared to manual debugging.

2.3 Robustness and Failure Mode Analysis
RADAR incorporates multiple layers of robustness mechanisms to
address potential failure modes and data quality challenges. Our
preprocessing framework employs statistical techniques and data
validation functions that automatically detect and handle inconsis-
tent or corrupted inputs, which are inevitable in real-world supply
chain data streams. To mitigate individual agent misinterpretation,
each specialized agent executes five independent runs to account
for stochastic variations and potential reasoning errors, with a ded-
icated aggregator agent identifying commonalities across runs to
generate the final agent-specific judgment. The final critical ag-
gregator agent receives diverse perspectives from all specialized
agents and cross-validates outputs against established Amazon
supply chain operational principles, filtering agent-level errors
that contradict broader domain knowledge or inter-agent consen-
sus. RADAR demonstrates resilience to incomplete data scenar-
ios, though comprehensive data availability enhances root cause
analysis performance. Furthermore, the human-in-the-loop design
enabled us to continuously refine the framework through expert
validation of edge cases, with iterative feedback improving overall
performance. Extensive testing under various conditions confirms
that RADARmaintains operational effectiveness evenwhen optimal
data conditions are not met. Lastly, our carefully crafted prompts
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instruct the final criticizer and aggregator agent to explicitly ex-
clude low-confidence information and transparently report when
insufficient data prevents accurate analysis. Through this validation
architecture and adaptive learning, RADAR manages the complexi-
ties of supply chain data and sets a new standard for resilient and
trustworthy root cause analysis.

3 Evaluation
We developed a comprehensive evaluation framework to assess
RADAR’s effectiveness at automating root cause analysis tasks
previously requiring extensive manual effort.

3.1 Evaluation Framework and Methodology
Our framework evaluates outputs across five dimensions of analysis
quality:

• Data Quality: Assesses metric completeness, consistency,
coverage, traceability, and definition clarity

• Analytical Rigor: Evaluates temporal analysis depth, root
cause identification, assumption clarity, and statistical valid-
ity

• Business Logic: Measures scale alignment, impact quantifi-
cation, term accuracy, and vocabulary adherence

• Communication: Examines precision, causality clarity, log-
ical structure, and professional style

• Information Structure: Assesses information prioritiza-
tion, structure, evidence organization, and headline effec-
tiveness

Each dimension contains 4-5 specific criteria scored on a 5-point
scale, with detailed rubrics ensuring consistent evaluation. To en-
sure objective assessment, we implemented a two-stage evaluation
process:

(1) Initial scoring: An LLM-based evaluation system trained
on expert-annotated examples scored all analyses

(2) Human verification: Domain experts manually verified a
30% sample of these evaluations to validate scoring consis-
tency

The human verification showed high agreement with the au-
tomated scoring, confirming the reliability of our evaluation ap-
proach.

3.2 Comparative Evaluation
We evaluated RADAR against three benchmarks:

(1) Human expert analyses: 10 analyses from supply chain
specialists

(2) Single-agent LLM: Our initial monolithic design
(3) Standard prompt approach: A baseline using simplified

prompting without specialized agents or preprocessing
These results demonstrate the significant advantages of our

multi-agent approach over both human analyses and simpler LLM
implementations. Notably, while the single-agent approach outper-
formed human experts in overall quality, it still fell substantially
short of the multi-agent design in all dimensions.

3.3 Key Performance Indicators
Our evaluation revealed RADAR’s strengths in several areas:

• Root Cause Identification Accuracy: 91% alignment with
expert-verified causes, compared to 64% for single-agent and
42% for standard prompt approach

• Data Traceability: 98% of RADAR’s claims were directly
traceable to source data, compared to 37% for human analy-
ses, 82% for single-agent, and 29% for standard prompt

• Hallucination Rate: 3% in RADAR, compared to 11% in
single-agent and 42% in standard prompt approach (mea-
sured by claims with no data support)

• Time Efficiency: RADAR reduced analysis time from 8-40
hours (human) to approximately 2 hours, an 85-95% improve-
ment

3.4 Generalizability Beyond Supply Chain
Our structured data processing techniques and multi-agent archi-
tecture generalize beyond supply chain to domains with similar
characteristics: time-series analysis (financial markets, sensor data),
multi-entity relationships (CRM, healthcare records), and multi-
factor causality (fraud detection, quality control).

3.5 Key Insights and Technical Lessons
Key insights for LLM applications to structured data include: (1)
Explicit structure preservation improved reasoning quality by 31%
versus flexible formats; (2) Context-aware data summarization en-
hanced analytical accuracy by 28%; (3) Domain-specialized agents
outperformed general-purpose LLMs by 49%; and (4) Our optimal
balance shifted 65% of calculations to preprocessors while preserv-
ing LLM reasoning flexibility. (5) Systematic self-diagnosis using
backward tracing reduced debugging time by multiple fold while
improving fix precision. See Appendix A for additional principles.

4 Conclusion
RADAR demonstrates that multi-agent LLM systems with appro-
priate preprocessing can effectively automate complex root cause
analysis of structured supply chain data. Our architecture addresses
critical challenges in applying foundation models to structured data,
including context length limitations, domain-specific reasoning, and
hallucination management, with substantial improvements over
both human experts and simpler LLM implementations.

Beyond supply chain applications, our work contributes techni-
cal approaches to structured data processing for LLMs that general-
ize to other domains. The systematic principles we’ve developed for
balancing deterministic preprocessing with LLM reasoning provide
a framework for effective foundation model applications across
industries.

Looking forward, we plan to leverage RADAR-generated syn-
thetic analyses for supervised fine-tuning and RLAIF. Our vision
includes domain-specific fine-tuned models that combine struc-
tured reasoning with flexibility for novel scenarios, transforming
analytical tasks involving structured data.
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A Engineering Principles for LLM-based
Structured Data Analysis

Through the development of RADAR, we established core engineer-
ing principles specifically tailored for LLM-based structured data
analysis systems. These principles guided our technical decisions
and can be applied to similar foundation model applications across
domains.

A.1 Architectural Design Principles
Single Responsibility (Component Specialization): Each agent
focuses on specific domain expertise with clearly defined bound-
aries. This principle enabled fault isolation, where issues in one
agent (e.g., hallucinations in demand forecasting) did not cascade to
other analyses. In practice, modifications to the Economics Agent
improved its performance by 37% without requiring changes to
other components.

Multi-Agent Coordination: We established standardized infor-
mation exchange protocols between agents, explicit responsibility
boundaries, and synthesis prioritization rules. Our synthesis agent
uses weighted evidence assessment based on data quality mark-
ers from each specialized agent, particularly valuable when agents
produced conflicting interpretations.

Progressive Computational Offloading: As we identified re-
liable patterns, we progressively moved calculations from LLMs to
preprocessors. For example, shifting product substitutability calcu-
lations from LLMs to preprocessing code reduced hallucinations by
28% and improved computational efficiency by 48%, while preserv-
ing the LLM’s reasoning capabilities for explaining the implications
of these relationships.

A.2 Data Processing Principles
Input Data Quality and Structure: Through experimental com-
parison, we found that providing LLMs with hierarchically struc-
tured data improved analysis quality by 39% over flat data formats.
Our optimal approach organizes data by relevance hierarchy, with
critical KPIs positioned prominently in the context window while
maintaining access to supporting details.

Data Consistency Across Components: We implemented
shared metric definitions and standardized time series interpreta-
tions across all agents. This standardization reduced contradictory
findings by 65% compared to our earlier implementations where
each agent used slightly different metric definitions.

Fact vs. Opinion Separation: We explicitly distinguished be-
tween data-driven facts and interpretive analysis through struc-
tured templates. Each conclusion references specific evidence with
confidence levels, reducing ungrounded claims by 72% compared
to earlier versions.

A.3 Agent Design Principles
Explicit Memory Management: We found that LLM agents with-
out explicit memory mechanisms tend to lose track of complex
reasoning chains. Our implementation of structured logging mech-
anisms that capture intermediate conclusions improved consistency
by 47% across multi-step analyses.

Tool Augmentation Over Prompt Expansion: When agents
needed to perform complex calculations, we found providing purpose-
built functions outperformed adding detailed calculation instruc-
tions to prompts. This function-calling approach reduced token
consumption by 61% while improving calculation accuracy by 38%.

Data-Grounded Response Protocol: We implemented strict
protocols requiring agents to explicitly indicate when information
is unavailable rather than attempting extrapolation. This "honest
uncertainty" principle reduced hallucination rates by 76% compared
to early prototypes where agents attempted to provide complete
answers regardless of data limitations.

Modular Prompt Engineering: By structuring prompts as func-
tional modules (system context, task definition, reasoning frame-
work, response formatting), we enabled targeted improvements
without disrupting entire agent behaviors. This approach reduced
regression issues by 83% compared to holistic prompt updates.

A.4 System Improvement Principles
ExtensionWithout Modification: When adding new capabilities,
we extended rather than rewrote existing prompts. This approach
preserved previously validated functionality while incrementally
improving system capabilities, reducing regression issues by 81%
compared to full prompt rewrites.

Systematic Backward Tracing: Our debugging methodology
always works backward from outputs to inputs, verifying informa-
tion presence at each stage. This approach identified that 68% of
quality issues originated in preprocessing while 24% came from
agent instructions and only 8% from synthesis.

Human-in-the-Loop Integration: We systematically incorpo-
rated expert feedback through structured prompt updates. Evalu-
ations showed this approach accelerated system improvement by
3.2x compared to purely algorithmic optimization.

Quantitative Performance Management: We continuously
monitored token usage and processing time, optimizing the balance
between preprocessing and LLM computation. This allowed us to
maintain consistent performance while processing increasingly
complex analyses.

These principles form a comprehensive framework for develop-
ing LLM-based structured data analysis systems that deliver consis-
tent, high-quality results while enabling continuous improvement.
By applying these principles systematically, we achieved substan-
tial gains in analysis quality, system reliability, and development
efficiency.
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