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Abstract
While most people associate e-commerce primarily with online re-
tailers and marketplace platforms, financial institutions also play a
crucial – yet generally overlooked – role in the e-commerce ecosys-
tem. Behind the scenes, banks and payment processors enable the
majority of online transactions, as most customers rely on credit
cards to pay for their transactions on e-commerce platforms. De-
pending on the customer’s spending needs, banks can tailor their
services, such as different credit cards and/or merchant promotions
that align with the customer’s historical spending. This work ad-
dresses the challenge of using credit card transactions to curate
relevant features for e-commerce personalization from the perspec-
tive of a financial institution. Unlike in e-commerce retailers (e.g.,
Amazon) where a transaction itemizes the products or services
transacted by the customer, no such granular information is gener-
ally given in credit card transactions. Instead, using the merchant
name and category alone, we use large language models (LLMs) to
generate the merchant metadata, apply open-source information
to vet the generated content, and compile the vetted content into
a knowledge graph linking merchants to their products, services,
industries, competitors and target customers.

CCS Concepts
• Computing methodologies→ Natural language generation;
• Information systems→ Information extraction; Business
intelligence; • Applied computing→ Online banking.
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1 Introduction
Financial institutions play a crucial role in the e-commerce ecosys-
tem by supplying the credit cards and digital payment options
that enable customers to complete online transactions. Unlike e-
commerce retailers, that have direct access to detailed information
about the specific products and services purchased, financial insti-
tutions are privy to limited transaction data, such as time, location,
and merchant involved. This results in a partial observability prob-
lem, where customer intent must be inferred indirectly at the mer-
chant level, often based on the frequency and pattern of transactions
with a particular merchant or across groups of related merchants.

Why do (card-issuing) financial institutions want to infer cus-
tomer intent? Primarily, it allows them to better match their offer-
ings. On a macro scale, customers are offered a variety of credit
card options, some of which are particularly economical for ev-
eryday purchases such as groceries, dining, travel, and more. On
a micro scale, many merchants market themselves by providing
time-sensitive offers through credit card companies, as an incentive
for customers to shop with them upon activating these offers from
their credit cards. Understanding customer intent is key for finan-
cial institutions to deliver personalized experiences and relevant
product recommendations within their digital services.

Despite financial institutions’ access to rich customer financial
data, information related to transactions with merchants is often
limited, typically restricted to merchant categories or names, which
themselves require entity reconciliation and cleanup. For example,
a merchant’s name appearing on a transaction (i.e., a line item on a
credit card statement) may include other information such as store
number, location or digital payment tag, which needs to be removed
before it can be matched to the merchant’s dba or doing-as-business
name used by the merchant for its branding and marketing.

At its core, this is a matching problem between credit card cus-
tomers (users) and merchants. The goal is to identify similar or
related merchants to recommend to users based on active mer-
chant offers and user transaction history. Ideally,merchant metadata
should include business details such as the merchant’s products and
services, their competitors, and their consumer-centric appeal. His-
torically, financial institutions have relied on business intelligence
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providers (e.g., FactSet, PitchBook, etc.) that collect firmographics
(e.g., industry, revenue, market share, location, years in business,
etc.) to source merchant information. But firmographics are not
ideal for establishing merchant similarity from a consumer-centric
perspective. For example, if a small business can offer a cheaper
price or a more lenient return policy, a budget-conscious user
may choose the small business over a large, established business
as their preferred merchant for a given transaction. Hence, user-
to-merchant recommendation needs to be founded on consumer-
centric merchant metadata instead of firmographics alone.

To source consumer-centric merchant metadata, we leverage
LLMs for metadata generation through prompting. This approach
suffices for popular merchants, as most LLMs (e.g., GPT, Claude,
Gemini, etc.) are knowledgeable about popular merchants because
these merchants would have been mentioned in open-source data
(e.g., Wikipedia, Common Crawl, etc.) on which LLMs were trained.
For lesser-known merchants, LLMs are prone to hallucinations,
in which unsubstantiated metadata were generated based solely
on cues from the merchant name and category. To validate the
LLM-generated metadata, we implement a rigorous fact-checking
mechanism as part of our metadata process. This process not only
involves using external resources (e.g., Wikipedia, SerpAPI, etc.)
but also human-in-the-loop to produce gold-standard data that can
be fed back to finetune the system performance.

Our contribution is an end-to-end, enterprise-scale merchant
metadata pipeline that ingests merchants sourced from users’ trans-
actions and offer merchants from the credit card ecosystem; per-
forms name reconciliation and deduplication; and generates consumer-
centric merchant metadata which are fact-checked and assigned a
per-attribute confidence value. The metadata are organized into a
knowledge graph, that can be used as features by downstream use
cases (e.g., user-to-merchant recommendation or spending-aware
chatbot) to develop personalization models.

2 Related Work
In recent years, the intersection of large language models (LLMs)
and knowledge graphs (KGs) has garnered significant attention, par-
ticularly in the context of enhancing search systems and metadata
enrichment. Knowledge graphs offer a structured way to represent
and understand the context of search queries, enabling more ac-
curate and relevant search results. Despite their potential, there
has been limited research focused on leveraging LLMs to construct
knowledge graphs, especially at the enterprise level.

LLMs for KG construction: Carta et al. [2] showed that itera-
tive zero-shot prompting of LLMs can be used to construct reason-
ably accurate KGs. Within the enterprise setting, motivated by the
need to efficiently query document data lakes, Sun et al. [9] pro-
posed Doc2KG, a human–LLM collaborative framework designed
to construct high-quality, unified knowledge graphs from hetero-
geneous enterprise documents. Hao et al. [3] recognized that vast
amount of latent knowledge is encoded within pretrained LMs (e.g.,
BERT and its variants), and proposed the BertNet framework which
extracts a relational KG from a pretrained LM by predicting entity
pairs that satisfy a given relation, using only an initial prompt with
few-shot examples of entity pairs. Hu et al. [4] started the GPTKB

project, which uses GPT-4o-mini to construct a large-scale knowl-
edge base (as of this writing, contains 100M triples for 3M entities),
thus demonstrating the feasibility of extracting structured knowl-
edge from LLMs at scale. By leveraging LLMs for the construction
and maintenance of knowledge graphs, search systems can exploit
the wide coverage and timely relevance of text sources while still
benefiting from the structured representation of graphs.

LLMs for Metadata Enrichment: Concurrently, industries
have started to embrace LLMs as a cost-effective way to enrich
metadata within existing knowledge bases. Both IBM [5] and Fi-
delity [8] have adopted LLMs in automating the generation of
metadata in data catalogs, with a focus on table-level and column-
level descriptions. Reusens et al. [7] apply similar techniques to
enrich metadata in museum collections to improve the accessibility
of archival materials. Liao et al. [6] show that LLMs can be used to
automate website information retrieval via extraction of structured
product metadata (product names, categories, descriptions, and
specifications) directly from company websites.

LLMs for E-CommerceRecommendation:Ourwork is closely
related to LLM-PKG [10], which focuses on generating a product
knowledge graph using LLMs for item- and user-based recommen-
dations on the eBay shopping platform. In contrast to LLM-PKG’s
build-then-prune strategy for constructing the knowledge graph
(i.e., prompting for product recommendations then mapping to the
merchant’s inventory), our method builds the graph from rigor-
ously vetted public information about the merchants right from
the start. This ensures the development of high-quality knowledge
graph embeddings, enabling the identification of similar merchants
with higher trustworthiness.

3 System Design and Architecture
Our metadata pipeline (cf. Figure 1) consists of a name reconcilia-
tion module (2), a metadata generation module (4b), a fact-checker
module (5–9) and a knowledge graph module (10b and 11).

3.1 Data
The input to the pipeline is a batch of tuples containing merchant
names and categories, i.e., 𝑥 = (𝑛𝑎𝑚𝑒, 𝑐𝑎𝑡). As alluded to in Section
1, we have two populations of merchants: the offer merchants and
the transaction merchants. For each population, the names and
categories of merchants are extracted from the appropriate propri-
etary databases, and are prepped for ingestion by the pipeline (1).
While offer merchants come from a curated offer catalog sourced
by third-party partners and therefore require minimal text pro-
cessing, transaction merchants generally have spurious charac-
ters in their names (introduced by payment processors as trans-
action metadata). Generally, each transaction maps to a single
merchant and category. But if a merchant has multiple lines of
business, different locations or different payment platforms (e.g.,
Square, Stripe, etc.), then a transaction may be attributed a dif-
ferent merchant category despite originating from the same mer-
chant. In this case, a merchant may be associated with multiple
categories:

(
𝑛𝑎𝑚𝑒, {𝑐𝑎𝑡𝑘 }𝐾𝑘=1

)
. To ensure coverage across the cate-

gories, we recommend expanding the categories into distinct tuples:
(𝑛𝑎𝑚𝑒, 𝑐𝑎𝑡1), (𝑛𝑎𝑚𝑒, 𝑐𝑎𝑡2), ..., (𝑛𝑎𝑚𝑒, 𝑐𝑎𝑡𝐾 ), so metadata can be gen-
erated for the merchant along its different lines of business.
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Figure 1: Merchant metadata pipeline

3.2 Name Reconciliation
To standardize the merchant names, we use LLM to map each
merchant to its doing-business-as name, referred to its dba (2).
While it is possible to look up the actual dba using tables provided
by business intelligence vendors, we want the name that the LLM
knows the merchant by. This step serves as a preprocessing step
to filter out the merchants that are unfamiliar to the LLM and thus
mitigate the risk of LLM hallucination. For each LLM call, we also
elicit the confidence for the dba. In essence:

(𝑛𝑎𝑚𝑒, 𝑐𝑎𝑡) LLM↦−−−−→ (𝑑𝑏𝑎, 𝑐𝑜𝑛𝑓 )
Based on the 𝑐𝑜𝑛𝑓 value, we bin the reconciled merchants accord-
ingly to inform priority for human-in-the-loop checking.

In our current implementation, reconciledmerchantswith 𝑐𝑜𝑛𝑓 ∈
{ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚} are routed for metadata generation. Using the rec-
onciled merchant’s LLM-generated dba, we query the knowledge
graph to check if the merchant has already been processed and its
metadata saved to the graph (3). If so, the metadata is fetched and
returned (4a). Otherwise, it is routed for metadata generation (4b).

3.3 Metadata Generation
In this step (4b), we prompt the LLM to generate metadata for a
set of predefined attributes: 𝑎 ∈ A. For each of the reconciled
merchants, a LLM call is invoked to generate:

(𝑑𝑏𝑎, 𝑐𝑎𝑡) LLM↦−−−−→ {𝑎 : (𝑥, 𝑐𝑜𝑛𝑓𝑥 )}𝑎∈A
where 𝑎 denotes the attribute, 𝑥 the LLM-generated metadata for
that attribute, and 𝑐𝑜𝑛𝑓𝑥 is the LLM-generated confidence about 𝑥 .

Per our business requirements, we elicit the following attributes:
• Products and their associated industries
• Services and their associated industries
• Competitors
• Target customers
• Text description of the merchant

These attributes were specifically chosen in accordance to the
schema of our knowledge graph (cf. Subsection 3.5). Condensed

versions of our prompts are shown in Figure 2. The prompt tem-
plate for this generation task underwent the most iterations in our
attempt to balance generation quality with relevance, accuracy,
token count, and structured format adherence (e.g., JSON validity).

3.4 Metadata Fact-checker
Using the confidence values, the LLM-generated metadata are fil-
tered to keep only those with high confidence:

{(𝑎 : 𝑥∗)} ⊆
𝑐𝑜𝑛𝑓𝑥=ℎ𝑖𝑔ℎ

{𝑎 : (𝑥, 𝑐𝑜𝑛𝑓𝑥 )}

The filtered metadata X∗ = {𝑥∗} is subsequently fact-checked
against open-source data. Each attribute 𝑥∗ in structured format is
mapped to a claim 𝑐 (5), which constitutes a simple sentence:

<subject> <verb> <object>
𝑐 : 𝑑𝑏𝑎 + 𝑣𝑒𝑟𝑏 (𝑎) + 𝑥

where the subject is generally the merchant’s reconciled name 𝑑𝑏𝑎;
the verb is selected to be semantically equivalent to the attribute 𝑎;
and the direct object is the attribute’s metadata 𝑥 .

Each claim 𝑐 is analyzed (via LLM) for subjectivity, in order to
determine whether it is factually verifiable. The claims that are not
verifiable are discarded (6):

{𝑐∗} ⊆
𝑣𝑒𝑟𝑖 𝑓 𝑖𝑎𝑏𝑙𝑒

{𝑐}

Each verifiable claim 𝑐∗ is used to generate an evidence query 𝑞𝑒
and a verification query 𝑞𝑣 (7). The evidence query is tailored based
on whether Retrieval-Augmented Generation (RAG) systems or
real-time APIs are used for fact-checking.

To retrieve evidence (8), one can utilize real-time APIs (e.g., Ser-
pAPI) or offline data dumps. We recommend using real-time APIs
if external API calls can be made from the production environment,
as this minimizes the overhead associated with managing offline
dumps. If real-time API access is not feasible, business-relevant
data dumps can be curated from open sources like Wikipedia and
Wikidata. These offline data dumps can be integrated into a RAG
system. In the evidence query 𝑞𝑒 , “documents” can refer to either



LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada Ng et al.

the responses from real-time APIs or the processed chunks from
curated data dumps. The verification query 𝑞𝑣 is instantiated with
the retrieved evidence 𝑒 , and used to prompt a LLM to verify the
claim as a structured response (𝑣𝑒𝑟𝑑𝑖𝑐𝑡, 𝑠𝑐𝑜𝑟𝑒) (9). Using the confi-
dence 𝑠𝑐𝑜𝑟𝑒 , the claim 𝑐 will be accepted, rejected or be manually
re-examined by human annotators (10a).

In summary, a high-confidence attribute 𝑥∗ is transformed into
a simple-sentence claim 𝑐 . A factually-verifiable claim 𝑐∗ is fact-
checked using supporting queries (𝑞𝑒 , 𝑞𝑣) to fetch evidence 𝑒 for
determining a verification verdict (𝑣𝑒𝑟𝑑𝑖𝑐𝑡, 𝑠𝑐𝑜𝑟𝑒):

𝑥∗ ↦→ 𝑐 ⇝ 𝑐∗ ↦−→ (𝑞𝑒 , 𝑞𝑣)
𝑞𝑒

Retriever↦−−−−−−−→ 𝑒

𝑞𝑣 (𝑒)
LLM↦−−−−→ (𝑣𝑒𝑟𝑑𝑖𝑐𝑡, 𝑠𝑐𝑜𝑟𝑒)

3.5 Knowledge Graph
The claims determined to be “Supported” (with sufficiently high
confidence) are propagated as verified claims {𝑐✓}:

C✓ =

{
𝑐✓

}
⊆

𝑣𝑒𝑟𝑑𝑖𝑐𝑡+

{
𝑐∗
}

The verified claims are mapped back to the structured metadata
({𝑎 : 𝑥}) to generate the tuples for graph database ingestion:

(𝑑𝑏𝑎)︸︷︷︸
CompanyNode

− [𝑎]︸︷︷︸
Relationship

− (𝑥)︸︷︷︸
AttributeNode

These tuples are aggregated into dataframes for incremental loading
into the graph. For now, we use an embedded graph database, like
Kuzu1, to reduce latency and simplify our architecture without the
overhead of maintaining a database server.

The conversion from verified metadata to graph-ready tuples
can be streamlined if one starts with highly structured metadata
covering similar concepts. In our case, we started with the graph
schema, and used the graph relationships to come up with the mer-
chant attributes to include in our metadata generation prompt. We
iterated between generation and schema refinement, incorporating
feedback from our human annotators that some metadata would
be difficult to verify and thus, we would be wasting resources in
generating subjective metadata that would be discarded. As a result,
our knowledge graph schema was also refined in the process based
on the quality of data that we were able to source through the LLM
and fact-checked using our available data sources.

If one does not have a predefined graph schema, the LangChain
LLMGraphTransformer2 library can be used to extract entities and
relationships from text. We found this to be useful in brainstorming
an initial graph schema but impractical for mass conversion of
unstructured text to graph, as it is prompted to extract as many
entities and relationships as possible, resulting in spurious entities
and relationships that are irrelevant.

4 Implementation
The financial industry is one of the most heavily regulated sectors
globally, subject to a myriad of compliance procedures designed to
ensure the stability and integrity of the financial system, protect
1https://kuzudb.com
2https://python.langchain.com/docs/how_to/graph_constructing

consumers from fraud and malpractice, and prevent systemic risks
that could lead to economic crises. It follows that financial insti-
tutions deploying systems on the cloud must adhere to stringent
regulatory compliance requirements, such as ensuring data encryp-
tion and implementing robust access controls to protect sensitive
financial information.

Our system is designed with these considerations in mind (cf.
Figure 3). Our system is deployed on AWS, where we have sepa-
rate zones to ensure isolation of our users’ transactional data from
any external connections. External to our system, user transaction
histories are pulled into a s3 bucket at regular cadence. The mer-
chant names and categories from these transactions are saved to a
separate Transactions s3, for ingestion by our system.

A scheduler (1) would trigger our system to ingest the data
from this s3. Within our internal VPC, the prompt generator (2)
would read from the Merchants s3 and instantiate the prompts
using predefined prompt templates that have been cleared by our
governance body. A prompt checker (3) applies proprietary, context-
sensitive, content filtering to ensure that the instantiated prompts
contain no sensitive data or unintended information that could be
shared with the external API providers. The proprietary filtering is
achieved through libraries that are managed by our risk team and
are rigorously vetted per compliance regulations.

Isolation between the internal data store and external calls is
accomplished via a VPC that communicates with the internal VPC
through a publish-subscribe model implemented using Kafka3.
Within the external VPC, a request scheduler (5) consumes data
from Kafka and construct the appropriate payloads for interfacing
with external APIs (e.g., Azure4, Bedrock5, Wikipedia/Wikidata6,
and SerpAPI7). Under the hood, it handles API authentication (re-
freshing API keys as needed) and creates authorization headers, as
well as tracks API usage to schedule jobs within service limits (e.g.,
requests per minute).

The API calls are routed through a proxy, ensuring secure and
controlled access, while the responses are similarly retrieved via
the proxy to maintain consistency and security in data handling.
A response checker (6) checks the responses for errors, routing
back unsuccessful requests to the request scheduler as needed.
The successful responses are processed by the content checker (7)
which performs another pass of content filtering to ensure safety
and compliance in the responses. The responses from both LLMs
and fact-checking data APIs are combined to generate and fact-
check the merchant metadata (as described in Section 3) within
the metadata curator (8). Processed merchants are now enriched by
their corresponding metadata.

Finally, the curated metadata would be queued for “pushing”
back into the internal VPC by Kafka. Within the internal VPC, the
metadata would be picked up by a metadata consumer (9) which
would register the metadata in an internal data catalog before sav-
ing to the Curated Metadata s3. It would prepare the metadata into
graph-ready tuples (cf. Section 3.5) for ingestion into the Kuzu graph

3https://kafka.apache.org
4https://azure.microsoft.com/en-us/products/api-management
5https://aws.amazon.com/bedrock
6https://www.wikidata.org
7https://serpapi.com
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LLM Prompt: Name Reconciliation Template

Identify the company for the transaction labeled "[insert name]" in the "[insert category]" merchant category. Provide
the information in JSON format:
{
"company": "Common name, include establishment type if eatery, or leave blank if unknown",
"confidence": "high|medium|low|idk"
}

LLM Prompt: Metadata Generation Template

Provide factual information on "[insert dba]" in the "[insert category]" category in JSON format.
{

"Company": "Company",
"Products": {

"list": "<Product>: <Industry> or blank",
"confidence": "high|medium|low|idk"

},
"Services": {

"list": "<Service>: <Industry> or blank",
"confidence": "high|medium|low|idk"

},
"Competitors": {

"list": "Company names or blank",
"confidence": "high|medium|low|idk"

},
"Target Customers": {

"list": "Descriptive list or blank",
"confidence": "high|medium|low|idk"

},
"Description": {

"text": "Brief summary or blank",
"confidence": "high|medium|low|idk"

}
}

Retriever Query: Evidence Retrieval Template

Retrieve evidence from the documents to verify: [Insert claim]

LLM Prompt: Verification Template

Verify the claim and return a JSON response:
**Claim:** [Insert claim]
**Evidence:** [Insert retrieved evidence]
**Output Format:**
{
“verdict”: “supported|unsupported”,
“confidence”: “A confidence score (0 − 100%)”,
“supporting_evidence”: “Phrases from the evidence that substantiates the claim”,
“contradictory_evidence”: “Phrases from the evidence that refutes the claim”
}

Figure 2: Simplified templates for name reconciliation, metadata generation and fact-checking



LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada Ng et al.

Figure 3: Metadata pipeline implementation

database. The ingestion process will add nodes and edges (corre-
sponding to the enriched merchants) to the knowledge graph. Once
ingested, the enriched merchants would be temporarily removed
from the Merchants s3 until they are due for metadata refresh.

5 Evaluation
To evaluate the curated metadata, we apply them in a downstream
task of merchant recommendation. To recap, we have two pop-
ulations of merchants: the offer merchants and the transaction
merchants. The task is to determine which offer (associated with an
offer merchant) to recommend to a user. Given an offer merchant,
we retrieve similar merchants from the population of transaction
merchants. If these retrieved merchants exist within a user’s re-
cent history, then the offer merchant may be recommended to the
user. (This approach protects user information as user information
remains inside our internal VPC. LLMs are only being used to gen-
erate the merchant metadata and their text embeddings. No user
information is passed to external LLMs.)

Within a typical 90-day period, we can have tens of thousands
of offer merchants and millions of transaction merchants. For this
offline evaluation study, we sampled 20K merchants: 10K from each
population, extracted during the same timeframe of February to
May 2025. As the merchants proceed through the pipeline, they
are dedupped using the LLM-generated dbas’ (cf. Section 3.2) and
pruned if metadata generation is insufficient (cf. Section 3.3). By
the time the metadata undergoes fact-checking (cf. Section 3.4),
the offer merchant population has been reduced by 6% and the
transaction merchant population by 22%. During fact-checking,
only metadata that are vetted by supporting evidence are kept, thus
further reducing the merchant population to those that have public
records or online presence (∼25% reduction). Finally, the evaluation
knowledge graph is constructed from the remaining merchants,
and ends up having ∼30K entities and 7 relationships, as follows:

• (𝐶𝑜𝑚𝑝𝑎𝑛𝑦) − [𝑂𝑓 𝑓 𝑒𝑟𝑠] − (𝑃𝑟𝑜𝑑𝑢𝑐𝑡)
• (𝐶𝑜𝑚𝑝𝑎𝑛𝑦) − [𝑂𝑓 𝑓 𝑒𝑟𝑠] − (𝑆𝑒𝑟𝑣𝑖𝑐𝑒)
• (𝑃𝑟𝑜𝑑𝑢𝑐𝑡) − [𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜] − (𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦)
• (𝑆𝑒𝑟𝑣𝑖𝑐𝑒) − [𝐵𝑒𝑙𝑜𝑛𝑔𝑠𝑇𝑜] − (𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦)
• (𝐶𝑜𝑚𝑝𝑎𝑛𝑦) − [𝐶𝑜𝑚𝑝𝑒𝑡𝑒𝑠𝑊 𝑖𝑡ℎ] − (𝐶𝑜𝑚𝑝𝑎𝑛𝑦)
• (𝐶𝑜𝑚𝑝𝑎𝑛𝑦) − [𝑇𝑎𝑟𝑔𝑒𝑡𝑠] − (𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 )

5.1 Embeddings
The metadata are used to generate text and knowledge graph em-
beddings. In this study, we derive three sets of metadata-derived
embeddings, and compare against the baseline embedding:

• base: Using the merchant name and category, a sentence
is formed and embedded using text-embedding-ada-0028
with embedding dimension of 1536.

• meta-ada: Using the LLM-generated metadata, the text de-
scription is embedded using text-embedding-ada-002with
embedding dimension of 1536.

• meta-TransE: Using the evaluation knowledge graph (built
frommetadata), PyKEEN9 was used to train a TransE10 model
with embedding dimension of 150.

• meta-ComplEx: Using the evaluation knowledge graph,
PyKEEN was used to train a ComplEx11 model with embed-
ding dimension of 200.

Both TransE and ComplEx are popular embedding models used
in knowledge graph representation learning, with TransE being
computationally efficient and ComplEx being more suitable for mod-
eling complex and asymmetric relationships between entities. For
both models, the hyperparameters have been tuned using PyKEEN’s

8https://platform.openai.com/docs/models/text-embedding-ada-002
9https://github.com/pykeen/pykeen
10https://pykeen.readthedocs.io/en/stable/api/pykeen.models.TransE.html
11https://pykeen.readthedocs.io/en/stable/api/pykeen.models.ComplEx.html
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LLM Prompt: LLM-as-a-judge for recommendation grading

You are a shopping assistant and your job is to recommend stores that I would be interested in. Recently, I shopped at
[Insert offer merchant’s dba]. [Insert offer merchant’s description]
For each store in this list, determine its relevance.
===== START list =====
* [Insert retrieved transaction merchant1’s dba and identifier]: [Insert retrieved transaction merchant1’s description]
* [Insert retrieved transaction merchant2’s dba and identifier]: [Insert retrieved transaction merchant2’s description]
...
===== END list =====
Return your response as JSON:
{
[Insert retrieved transaction merchant1’s identifier]: “high|medium|low|idk”,
[Insert retrieved transaction merchant2’s identifier]: “high|medium|low|idk”,
...
}

Figure 4: Simplified template for LLM-as-a-judge to evaluate merchant recommendations

Taste of Belgium Restaurant (Lowest Precision) Georgetown Liquor Company (Low Precision)
base Versailles Restaurant, Friendly’s Restaurant, Burgerville Restaurant,

Dig Restaurant, Taco Bell Restaurant, The Melt Restaurant, Eataly
Restaurant, Yours Truly Restaurants, Nando’s Restaurant

Admiral Beverage, Liquid I.V., The Coca-Cola Company, Coca-Cola,
Foods Co, Village Tavern, Trader Joe’s, Foodland, Food City

meta
ada

La Madeleine French Bakery & Café, La Madeleine - French
Bakery & Cafe, First Watch Restaurant, Bagel Street Cafe, Common
Bond Bistro, Au Bon Pain Bakery & Café, Sant Ambroeus Restaurant,

85°C Bakery Cafe, Waffle House Restaurant, Biscuits Cafe

Parakeet Cafe, Boise Co-op, Common Bond Bistro, Aladdin’s
Eatery Restaurant, Juiceland Juice Bar, Boise Co-op Village,
Burgerville Restaurant, Velvet Taco Restaurant, Tavern In the

Square Restaurant, Gourmet Garage
meta
TransE

Maple Street Biscuit Co Restaurant, Original Pancake House, Hash
House A Go Go Restaurant, Biscuits Cafe, Keke’s Breakfast Cafe, Yours
Truly Restaurants, Breakfast Republic Restaurant, Black Bear Diner

Restaurant, Waffle House, Black Bear Diner

Brothers Bar & Grill, Hampton Social Restaurant, Rock Bottom
Restaurant & Brewery, Olive & Ivy Restaurant, Lazy Dog

Restaurant & Bar, Twin Peaks Sports Bar & Restaurant, Tommy’s
Tavern & Tap Restaurant, Yard House Restaurant, The Capital

Grille Steakhouse
meta
Com-
plEx

Maple Street Biscuit Company, Cupitol Coffee & Eatery, Hash House A
Go Go Restaurant, Common Bond Bistro, Costa Coffee - Coffee Shop,

Daily Provisions Bakery & Cafe, 7 Leaves Cafe, Frothy Monkey
Coffeehouse & Eatery, Broken Yolk Cafe - Eatery, Breakfast Republic

Restaurant

Duke’s Waikiki Restaurant, Seasons 52 Restaurant, Old Ebbitt Grill
Restaurant, ML Rose Craft Beer, Versailles Restaurant, Black Tap ,
Chuy’s Tex-Mex Restaurant, Bosa Donuts - Donut Shop, Tommy’s

Tavern & Tap Restaurant

Solidcore (Moderate Precision) Rocket Express Car Wash (Highest Precision)
base Shell, Nordstrom, Dermstore, Nordic Naturals, Designs for Health,

Thorne Research, Key Food, SalonCentric, Staples
Car Wash USA Express, Go Car Wash, Mister Car Wash, Crew Car

Wash, Mike’s Car Wash, Zip’s Car Wash,Mike’s Carwash,
Autobell Car Wash,WOW Carwash, Brown Bear Car Wash

meta
ada

Pure Barre, Club Pilates, SoulCycle, Equinox Fitness,
Powerhouse Gym, Lifetime Fitness, Barry’s Bootcamp, Planet

Fitness, CycleBar

Car Wash USA Express, Tommy’s Express, Go Car Wash,Mister
Car Wash, Everwash, Crew Car Wash, Zip’s Car Wash,WOW

Carwash, Autobell Car Wash, Take 5 Car Wash
meta
TransE

Barry’s Bootcamp, SoulCycle, CycleBar, Pure Barre, Club Pilates,
Powerhouse Gym, Vasa Fitness, EOS Fitness, 24 Hour Fitness, LA

Fitness

Go Car Wash, Cobblestone Carwash, Car Wash USA Express,
Mike’s Carwash, Cobblestone Car Wash, Take 5 Car Wash, Mister
Car Wash, Cobblestone Auto Spa, Brown Bear Car Wash, Crew

Car Wash
meta
Com-
plEx

Barry’s Bootcamp, Equinox Fitness, Lifetime Fitness, Planet
Fitness, Retro Fitness, Thorne Research, 24 Hour Fitness, Club

Pilates, Spoiled Child Wellness

Cobblestone Auto Spa, Cobblestone Carwash, Cobblestone Car
Wash, Brown Bear Car Wash, Delta Sonic, Car Wash USA Express,
Autobell Car Wash, Crew Car Wash, Take 5 Car Wash, Go Car

Wash
Table 1: A comparison of merchant recommendations (from lowest to highest) across different embedding sets. Bold merchants
are retrieved transaction merchants that are flagged as highly relevant by LLM-as-a-judge.
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Hyperparameters TransE ComplEx

Embedding dimension 150 200
Scoring function norm 2 N/A
Loss margin 1.00775 1.07732
Learning rate 0.00129 0.00880
Number of negatives per positive 4 96
Batch size 1024 128
Number of epochs 100 300

Table 2: Hyperparameters for TransE and ComplEx training

Figure 5: Violin plot of precisions comparing the metadata-
derived embeddings against the baseline

hyperparameter optimization pipeline which leverages Optuna12.
The final TransE and ComplExmodels are instantiated with margin
ranking loss along with tuned hyperparameters (cf. Table 2), then
trained over 100 and 300 epochs, respectively, with early stopping.
(Since ComplEx learns complex-valued embeddings, it requiresmore
epochs for convergence.)

5.2 Setup
Since the merchant populations have been subsampled, we leverage
a combination of g4dn.12xlarge and t3.medium AWS instances,
with the former for GPU-enabled training of knowledge graph em-
beddings and the latter for interfacing with external APIs. We use a
combination of gpt-4o-2024-11-2013 and o3-mini-2025-01-3114
in our metadata pipeline.

Each embedding model (base, meta-ada, meta-TransE, meta-
ComplEx) generates its own set of embeddings, which is indexed
by a separate FAISS vector store. For each set, we apply FAISS
to retrieve the top-10 most relevant transaction embeddings for
a given (query) offer embedding. For ComplEx’s complex-valued

12https://optuna.org
13https://platform.openai.com/docs/models/gpt-4o
14https://platform.openai.com/docs/models/o3-mini

embeddings, the real and imaginary parts were extracted and con-
catenated as real-valued embeddings (effectively doubling the em-
bedding dimension) before they are indexed by FAISS.

To determine the relevance of the retrieved transaction mer-
chants, we use anthropic-claude-v2-115 as LLM-as-a-judge be-
cause it has been found to align well with human judgment [1]. The
retrieved merchants from all four embedding sets are dedupped
and combined into one LLM-as-a-judge call to ensure consistency
across relevance grading and reduce costs (e.g., number of tokens
and requests). The LLM-as-a-judge prompt is given in Figure 4, and
its response is used to compute the retrieval precision.

5.3 Results
Using the LLM-as-a-judge annotations that label each retrieval as
one of {ℎ𝑖𝑔ℎ,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑤 , 𝑖𝑑𝑘}, we compute the precision (𝑃@10)
values and display them as a violin plot in Figure 5. We consider
both scenarios:

• Group1 (in orange): only ℎ𝑖𝑔ℎ as relevant
• Group2 (in green): both ℎ𝑖𝑔ℎ and𝑚𝑒𝑑𝑖𝑢𝑚 as relevant

The mean precisions for Group2, ranked from best to worst, are
as follows: 0.859700 for meta-ada2, 0.724367 for meta-TransE2,
0.651589 for base2, and 0.572917 for meta-ComplEx2. Similarly,
Group1 precisions are 0.540667 for meta-ada1, 0.391147 for meta-
TransE1, 0.354756 for base1, and 0.322814 for meta-ComplEx1. In
both groups, the ranking remains consistent: meta-ada is the best,
followed bymeta-TransE, base, andmeta-ComplEx as the worst.
meta-ComplEx may have been a poor fit as the metadata might
have lacked non-translational relationships. Notably, bothmeta-
ada andmeta-TransE outperform the baseline, highlighting the
potential of LLM-generated metadata to enhance merchant recom-
mendations. The strength of meta-ada lies in that the embeddings
are based on the company descriptions that emphasize the products
and services – likely the most crucial features for this recommenda-
tion task. In contrast,meta-TransE encapsulates a broad spectrum
of relationships, including competitors and target customers, while
achieving storage efficiency at one-tenth the size of meta-ada.

6 Conclusion
Understanding customer intent is crucial for personalizing experi-
ences across e-commerce applications. Given that we have access
only to the merchants that our users transacted at, we focus on gain-
ing insights about merchants by curating merchant metadata. To
achieve this, we have developed an enterprise-scale, LLM-enabled
merchant metadata pipeline that generates high-quality metadata
organized into a knowledge graph. Our evaluation indicates that
both text and TransE embeddings derived from this merchant meta-
data can enhance merchant recommendations. In this work, we
have leveraged LLMs for content generation, fact-checking and
LLM-as-a-judge to verify merchant recommendations. For future,
we plan to incorporate more LLM-as-a-judge for internal quality
controls, as well as LLM finetuning to improve metadata generation.
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