
Effective Product Schema Matching and Duplicate Detection with
Large Language Models

Andrea Iovine

aiiovine@amazon.de

Amazon.com, Inc.

Munich, BY, Germany

Yunhan Huang

yunhanh@amazon.com

Amazon.com, Inc.

Seattle, WA, USA

Melvin Monteiro

montmel@amazon.com

Amazon.com, Inc.

New York, NY, USA

Mohamed Yakout

myakout@amazon.com

Amazon.com, Inc.

Seattle, WA, USA

Sedat Gokalp

sggokalp@amazon.com

Amazon.com, Inc.

Seattle, WA, USA

Abstract
Building and maintaining a rich and high-quality product schema

helps customers of an e-commerce service find products based on

the characteristics they desire. As the quantity of products sold on

the service increases, so does the complexity of maintaining the

schema. Expanding it requires finding gaps, designing new product

attributes, and ensuring that they do not already exist in the schema.

In this paper, we present an automated system for product schema

matching, which uses a combination of semantic search and Large

Language Models (LLM) in order to align the product concepts from

two schemas. The approach was tested on the duplicate attribute

detection task using a dataset of 1, 399 product attributes, where

it achieved 90.2% 𝐹2, outperforming humans by 8.4% on the same

task. On the product schema matching task, it achieved 78.12% 𝐹1,

which is close to human-level performance. Moreover, we estimate

that the system can reduce the time spent by humans reviewing

new attributes by more than 90%.

ACM Reference Format:
Andrea Iovine, Yunhan Huang, Melvin Monteiro, Mohamed Yakout, and Se-

dat Gokalp. 2025. Effective Product Schema Matching and Duplicate De-

tection with Large Language Models. In Proceedings of LLM4ECommerce
Workshop at the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V.2 (LLM4ECommerce Workshop at KDD ’25). ACM, New York,

NY, USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
One of the most important challenges for e-commerce services is

managing the information for the hundreds of millions of prod-

ucts that they offer. Products differ significantly from each other,

and each one possesses unique characteristics that specific cus-

tomers are looking for. Accordingly, the success of an e-commerce

service is tied to how well it enables customers to find and pur-

chase their desired products by providing complete, detailed, and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/XXXXXXX.XXXXXXX

reliable information [1]. As the service grows larger by offering

more products and more product-level information, the difficulty of

managing, storing, and reconciling this information also increases

exponentially. Additionally, products gain new features over time

(e.g., LiDAR scanners on smartphones), which need to be captured

as early as possible.

Product information is typically stored in the catalog schema,
defined as the set of attributes, constraints, and metadata that de-

scribe a specific product. The catalog schema ensures that the data

exposed by the e-commerce service is consistent across products

and easy to maintain. Expanding the catalog schema requires sev-

eral steps, starting from analyzing signals coming from a multitude

of sources, such as manufacturers, sellers, retailers, and other ser-

vices. The next step involves identifying gaps in the schema, and

modeling new product attributes where necessary. A crucial part

in the modeling step is ensuring that the new attributes meet a

quality bar by detecting, remediating or filtering out defects before

they are released. In this regard, attribute duplication is one of the

most common defects, in which a new attribute describes the same

information as another attribute in the schema. Duplicate and over-

lapping attributes pose a serious risk to any e-commerce service,

resulting in redundant or even inconsistent product information

being shown to customers, worsening their buying experience and

compromising their trust in the service itself.

Detecting these issues is however a non-trivial task for various

reasons: first, it requires gaining a holistic awareness of the entire

schema, which spans hundreds of attributes for thousands of dif-

ferent types of products. Second, the same product information

can be represented in different forms and using different levels of

granularity. For example, the attribute "Image Brightness" for com-

puter monitors may be also represented as "Minimum Brightness"

and "Maximum Brightness". Finally, other defects in the attribute

metadata can make it difficult to conclude whether two attributes

model the same information: for instance, some attributes may not

be described adequately, or feature irrelevant values. When a candi-

date attribute is proposed, one has to compare it against the entire

set of existing attributes in the catalog schema, understand the dif-

ferences, resolve any potential ambiguities, and determine whether

it constitutes a net new addition to the schema. For humans, this

process is very time-consuming and prone to errors. Machine learn-

ing models have been proposed and applied in both literature and

practice [8, 14, 17], however they require significant amounts of

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada Andrea Iovine, Yunhan Huang, Melvin Monteiro, Mohamed Yakout, and Sedat Gokalp

training data in order to achieve satisfactory performance. Given

the dynamic nature of the catalog schema, both the model and

its training data must be continuously updated to accommodate

previously unseen entities, further increasing computational and

maintenance costs. On the other hand, recent advancements in Nat-

ural Language Processing have proven that state-of-the-art Large

Language Models (LLM) achieve groundbreaking performance in

complex understanding and reasoning tasks with limited or no

training data available. However, technical limits such as the con-

text length and computational cost require framing the duplicate

detection task in a way that plays into the strengths of LLMs while

minimizing their drawbacks.

In this paper, we propose using product schema matching as a

guardrail that detects duplicate attributes, and prevents them from

being introduced in the catalog schema. Schema matching is re-

sponsible for building a mapping between the common elements of

two or more product schemas, and is a critical step in data integra-

tion pipelines and data enrichment programs [17]. For this purpose,

we have designed and implemented a product schema matching

system that combines semantic search and pre-trained LLMs to

match attributes that describe the same product characteristic or

measurement. The system is highly configurable, and can be either

used in a fully unsupervised way, or can be tuned with a small set

of labeled data to identify the optimal set of parameters. We tested

the system on a realistic benchmark using a purpose-built dataset

of 1399 attributes, and results show that the system outperforms

human annotators on the duplicate attribute detection task (90.2%

𝐹2 vs. 81.82%). It also performs well on the schema matching task,

achieving performance that is close to human level (78.12% 𝐹1 vs.

79.75%). Through an online experiment, we discovered that our

approach can reduce the time needed by humans for the duplicate

attribute detection task by up to 91%.

The paper is structured as follows: Section 2 frames our work

within the current literature; Section 3 defines the product schema

matching task; Section 4 presents our schema matching system, and

Section 5 describes the experimental setup and the results. Finally,

Section 6 presents the conclusions and outlines future work.

2 Related Work
Our work draws inspiration from three lines of work: Ontology

Alignment (OA), Schema Matching (SM), and Entity Matching (EM).

Ontology Alignment. Ontology Alignment [5] (also known

as Ontology Matching) is defined as the identification of relations

between common elements of multiple ontologies. In the literature,

OA approaches can be divided into four macro-categories: Termino-

logical, Structural, Extensional, and Semantic [13, 19]. Our approach

mostly falls within the Terminological macro-category, and specifi-

cally, Language-based approach, since it involves reasoning over

textual content. Recent studies have investigated the application

of LLMs for the OA task. BERTMap [8] uses the BERT language

model as a base, and performs pre-training and fine-tuning to adapt

it to the OA task. He et al. [9] tested the pre-trained Flan-T5-XXL

and GPT-3.5-turbo models on the Ontology Alignment Evaluation

Initiative (OAEI) Bio-ML dataset, showing predictive performance

that is close to BERTMap, despite being used in a zero-shot setting.

Hertling and Paulheim [10] present OLaLa, which uses Sentence-

BERT embeddings to represent and retrieve concepts, and a LLM

prompt to classify them. The authors also compared two styles of

prompting: multiple-choice and single-choice, concluding that the
latter obtains higher 𝐹1. In this paper, we explore the application

of LLM-based OA in the product schema domain in a zero-shot

scenario. Similarly to [10], we rely on a single-choice prompt design.

Schema Matching. Given two schemas as input, the goal of

Schema Matching is to produce a mapping between elements of

the two schemas that correspond semantically to each other [16].

Shieh et al. [17] learns a vector representation for source and target

attributes, and uses configurable thresholds to classify attribute

pairs based on cosine similarity. We build upon this work by lever-

aging the most recent sentence embedding models such as Cohere,

and LLMs from the Claude and Mistral families for retrieval and

classification respectively. Liu et al. [12] presents GRAM, a schema

matching system based on generative AI solutions. It uses a text

classifier based on RoBERTa to partition source and target attributes

into logical categories. It also features a retrieval component that

selects relevant target attributes, as well as labeled examples from

a knowledge base. Finally, Flan-T5 is used to select the matching

target attribute, given the output of the retrieval component, using

a multiple-choice prompt similar to the one from [10]. In our pa-

per, we apply a similar solution for the specific goal of identifying

duplicate attributes before they are integrated into our product

catalog schema. While it features similar architectural decisions,

our approach does not rely on dividing attributes into orthogonal

groups, nor it requires any model training, aside from optional pa-

rameter tuning. Recently, Chugh and Zambre [4] presented ASTRA,

which frames the SM task as a machine translation task, and relies

on fine-tuning mT5 and mBART models to generate the matching

target attribute given an input attribute. One drawback of this ap-

proach is that the model has to be re-trained each time the target

schema is updated. On the other hand, our approach does not rely

on fine-tuning, and is better suited to a scenario in which the target

schema is constantly evolving.

Entity Matching. This task, also known as Entity Resolution,

consists of determining whether two entities refer to the same

real-world object or not [6]. EM draws some similarities with OA,

however, it focuses specifically on equivalence relationships be-

tween named entities. Deep learning approaches are used exten-

sively in the EM literature, which includes DITTO [11], BERT [14],

and multi-tasking models [18]. More recently, Peeters et al. [15]

showed that LLMs can achieve similar performance as fine-tuned

models with limited or no training data in the EM task. Fan et al. [6]

introduce the concept of batch prompting, in which multiple pairs

of entities are sent to the LLM for review in the same prompt, which

improves performance while reducing cost. It also investigates the

use of in-context learning, by selecting pertinent labeled examples

to integrate into the prompt text to assist the LLM. Our approach

implements the batch prompting strategy described in the work

above: specifically, we batch together all candidate target schema

attributes for a given attribute in the source schema.

Effective Product Schema Matching and Duplicate Detection with Large Language Models LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada

Target
Vector Store

LLMEmbedding
Models

Source
Attributes
a1, a2, a3, …

Target
Attributes
b1, b2, b3, …

Vector
Search

Top-K

Similarity
Threshold

Cosine

Retrieval Step Classification Step

Prompt
Template

Text
Representation

Templates

Source:
ai

Target:
bj
bk
…

Figure 1: Architecture of the proposed approach. Blue denotes the data related to the source schema, while green represents the
target schema.

3 Task Definition
The product schema matching task is defined as follows: Given two

product schema ontologies, respectively called 𝐴 (also referred

to as source schema) and 𝐵 (also referred to as target schema),
their respective sets of product attributes 𝐴 = {𝑎1, ..., 𝑎𝑛} and

𝐵 = {𝑏1, ..., 𝑏𝑚}, the goal is to define a set of equivalence rela-

tionships 𝑅 = {(𝑎𝑖 , 𝑏 𝑗) |𝑎𝑖 ∈ 𝐴,𝑏 𝑗 ∈ 𝐵} so that each pair of at-

tributes refers to the same quality, measurement, or characteristic

of the product, and both attributes in each pair can be used inter-

changeably without affecting the product information. For example,

suppose we are looking to align two product schemas that describe

the properties of backpacks, with the attribute "Outer Material"

appearing in the first one, and "Exterior Fabric" in the second. These

two attributes are very likely describing the same feature, that is,

the material of which the external part of the backpack is made of.

In order to determine whether two product attributes are a match

or not, we rely on their metadata: this often includes a name, a

short description explaining the scope of the attribute, a data type
indicating the type of values to be used, and/or a list of possible

values that the attribute can accept.

Product schema matching poses some unique challenges: for

instance, the product schema is generally very wide and shallow.

In fact, e-commerce services need to provide a wide range of infor-

mation about the products they sell, in order to ensure an adequate

experience for shoppers. On the other hand, a product schema only

features few relationships between nodes, making it unsuitable for

matching approaches that rely on structural data. The size also

comes with an additional challenge: this task requires checking

all pairs of attributes from the source and target schemas, which

equates to a 𝑛 ×𝑚 matching task. As the number of pairs increases

quadratically with the size of the schemas, reviewing each pair

quickly becomes intractable.

Differences between product attributes can be very nuanced, es-

pecially when dealing with different modeling choices and levels of

granularity, which often lead two attributes to be considered partial
matches instead, e.g., the attribute "Is Waterproof" only captures

part of the information conveyed by the more fine-grained attribute

"Water Resistance Level". In other cases, two attributes may have

some minor differences that do not preclude semantic equivalence:

in the domain of furniture tables, the attributes "Height" and "Table

Height" are describing the same measurement, with the only differ-

ence being that the latter is explicitly scoped for tables. Finally, more

complex relationships with a 1:n orm:n cardinality are also possible,
especially when an attribute is partially matching with two or more

attributes. This phenomenon is similar to the complex ontology

alignment task described in Amini et al. [2]. Referring back to the

backpack domain example, one product schema may contain an

attribute called "Number of Pockets", while another schema may

distinguish between the "Number of Interior Pockets" and "Number

of Exterior Pockets". While the approach described in this paper can

be configured to cover both partial semantic matches and complex

relationships, we decide to evaluate it on its ability to detect full

semantic equivalence relationships, for two reasons: (i) it minimizes

the risk of inconsistent labeling of the ground truth dataset due

to differing interpretations of "partial match"; (ii) some amount of

information overlap can be allowed, to align with customer expecta-

tions, fulfill legal requirements which require the service to display

sensitive product information, or to power specific user experience

elements.

4 Proposed Approach
In this paper, we present a system for product schema matching,

the architecture of which is shown in Figure 1. The system can be

divided into two main functional components: retrieval and classifi-
cation. The retrieval component uses semantic search to identify the

pairs of attributes from the source and target schemas that are most

likely to be equivalent. These pairs are then input to the classifica-

tion component, which relies on a pre-trained LLM together with

a prompt template built by domain experts to determine whether

each attribute pair is semantically equivalent or not. The architec-

ture is highly customizable and configurable, and supports a wide

range of embedding models and LLMs. Another advantage is that it

does not make assumptions on the underlying metadata available

for each schema, and can in fact be adapted to work with differ-

ent types of information. The system can be used either in a fully

unsupervised way, or it can use of a small development dataset to

optimize its parameters for a specific task, allowing for maximum

flexibility. Because it does not require supervised training, it can

adapt to new schemas or to updates to an existing schema with

minimal cost. The following sections will describe each component

in detail.

LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada Andrea Iovine, Yunhan Huang, Melvin Monteiro, Mohamed Yakout, and Sedat Gokalp

refrigerant_type

The type of refrigerant
used by the air
conditioner for heat
transfer.

Datatype: string

Values: r134a,r32,…

(1) Source Attribute 𝒂 (2) Text Representation
Templates

𝑇! 𝑎 	: “The attribute
Refrigerant Type is defined

as…”

𝑇" 𝑎 	: “Air Conditioner,
Refrigerant Type: r134a,

r32,…”

E1

E2

(3) Embedding Models

VS1

VS2

Collect
and Filter

(4) Vector Search

compressor_type
filter_type
refrigerant
cooling_power

(5) Target Attributes

𝐶#,!

𝐶#,"

𝐶#
𝑣#,! 	= 𝐸! 𝑇! 𝑎

𝑣#," 	= 𝐸" 𝑇" 𝑎

Figure 2: Running example of the retrieval step for the source attribute refrigerant_type.

4.1 Retrieval Step
As mentioned in Section 3, product schema matching theoretically

requires processing all concept pairs. Despite this, we can expect

that only a small fraction of pairs will actually represent a match.

This means that an exhaustive search of the entire set of pairs is

not only economically unfeasible, but also unnecessary. For this

reason, we implemented a retrieval step, whose goal is to identify a

subset of attribute pairs (𝑎𝑖 , 𝑏 𝑗) ∈ 𝐴 × 𝐵 that are most likely to be

semantically equivalent. This approach is also known as blocking in
the literature for both OA and EM systems [3, 11], and can also be

considered as an application of Retrieval-Augmented Generation

(RAG) [7]. The system offers a multi-retrieval feature that can use

multiple ways to represent each attribute at the same time, and

even customize the representation based on attribute metadata.

To begin, text representation templates are used to convert all

attributes from the source and target schema into standardized

textual forms. The templates organize attribute metadata like its

name, example values, and description into a sequence of words.

We then use sentence embedding models to convert these sequence

of words into vectors. Target schema embeddings are stored in a

vector store, for reuse across source schemas and for efficient cosine

similarity calculations. We also include metadata for each attribute

(e.g. product type, data type) to reduce the candidate space before

similarity calculations are done. At inference time, the attributes

from the source schema are embedded, and used to query the vector

store to retrieve the top 𝐾 most similar target attributes via cosine

similarity. Additionally, a minimum similarity threshold can be set,

in order to filter out low-similarity pairs from the result set.

Thanks to multi-retrieval, the system can use multiple combina-

tions of text representation templates and embedding models, and it

can even be configured to use different templates for different types

of attributes, combining the advantages of each model/template.

For each combination 𝑘 , we define the corresponding template 𝑇𝑘 ,

embedding model 𝐸𝑘 , target vector store 𝑉𝑆𝑘 = {𝑣𝑏 𝑗 ,𝑘 |𝑏 𝑗 ∈ 𝐵},
candidate threshold 𝐾𝑘 , and minimum similarity threshold 𝑆𝑘 . Ac-

cordingly, given a source attribute 𝑎 ∈ 𝐴, we define the correspond-
ing text representation as 𝑇𝑘 (𝑎), and the vector representation as

𝑣𝑎,𝑘 = 𝐸𝑘 (𝑇𝑘 (𝑎)). The set of candidate target attributes𝐶𝑎,𝑘 is then

defined as follows:

{𝑏 𝑗 ∈ 𝐵 | 𝑗 ∈ 𝑇𝑜𝑝𝐾𝑘
(𝑠𝑖𝑚(𝑣𝑎,𝑘 , 𝑣𝑏 𝑗 ,𝑘)) ∧ 𝑠𝑖𝑚(𝑣𝑎,𝑘 , 𝑣𝑏 𝑗 ,𝑘) ≥ 𝑆𝑘 } (1)

Once the results are retrieved from each combination of template

and embedding model, they are collected and merged. Assuming

that we are using 𝑘 = 1...𝑝 templates and embedding models, the

final set of candidates 𝐶𝑎 is defined as follows:

𝐶𝑎 =

𝑝⋃
𝑘=1

𝐶𝑎,𝑘 (2)

Figure 2 shows an example of the multi-retrieval approach in ac-

tion, applied to the attribute refrigerant_type defined in the context

of air conditioners: in step (2), the source attribute is converted into

text using two templates 𝑇1 and 𝑇2, each using different metadata:

the first template uses the attribute name and description, while

the second one uses the attribute name and example values. In step

(3), the sentences representing the source attribute are processed

separately by embedding models 𝐸1 and 𝐸2 respectively, resulting

in two distinct vector representations. These are then used to query

the vector stores 𝑉𝑆1 and 𝑉𝑆2, representing the target schema at-

tributes using the corresponding text representation templates and

embedding models. Finally, in step (4), the final set of candidate

target attributes is collected by merging the vector store outputs

𝐶𝑎,1 and 𝐶𝑎,2.

Our hypothesis is that the multi-retrieval approach enhances the

diversity and coverage of the retrieval step output by utilizing vari-

ous metadata in the semantic similarity calculation. For example, it

can be used to select target attributes that either have similar de-

scriptions, values, or both. The system can use the development set

to get the optimized combination of the following parameters: the

quantity and type of text representation templates and embedding

models, the value of 𝐾𝑘 , and the minimum similarity thresholds 𝑆𝑘 .

As for the implementation, we use Jinja
1
to power the templates

that convert attribute metadata into text. We chose it because it

can produce highly flexible templates with limited need for con-

figuration. We decided to employ embedding models offered by

AWS Bedrock
2
, which is a service that offers easy integration with

state-of-the-art language models. For the vector store, we rely on

the Amazon Relational Database Service (RDS)
3
, which simpli-

fies storage of vector-based data, and also provides efficient vector

search functionalities.

1
https://jinja.palletsprojects.com/en/stable/

2
https://aws.amazon.com/bedrock/

3
https://aws.amazon.com/rds/

https://jinja.palletsprojects.com/en/stable/
https://aws.amazon.com/bedrock/
https://aws.amazon.com/rds/

Effective Product Schema Matching and Duplicate Detection with Large Language Models LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada

4.2 LLM Classification Step
The classification step employs a LLM prompt to determine whether

each pair of attributes is semantically equivalent or not. The compo-

nent is made up of three parts: the prompt template, input data, and
output format. The prompt template is the section of the prompt

that contains the definition of semantic matching (see Section 3)

and a set of instructions, both of which are crafted by our team

of expert ontologists. We decided to follow this strategy since the

definition itself is very specific to the e-commerce domain, but also

relatively stable across different types of products. The full version

of the prompt used by the LLM classifier is available in Figure 3.

The second component is the input data, which collects the at-

tribute pairs and the metadata needed to perform the classification.

Following the insights found in the literature, we rely on batch
prompting [6] to group together multiple pairs of attributes in the

same prompt execution. This approach was shown to reduce overall

cost and increase classification stability, thanks to the additional

amount of contextual information given to the LLM in each exe-

cution. Differently from the existing implementation, we group all

pairs that share the same source attribute in a single prompt. We

leave the experimentation of other batching strategies for future

work. For source and target attributes, we provide the metadata that

describes them, such as the name, description, data type, and values.

In most cases, all available metadata is included in the prompt, how-

ever, data sparsity and quality issues may cause some parts of the

metadata to decrease matching performance rather than increase it.

For this reason, the system can be configured to include or exclude

each metadata element from the LLM prompt.

The third and final element of the classification step is the out-

put format, which defines the structure that the LLM must follow

when providing answers. This is a unique challenge that arises

when using a generative model to perform classification: unlike a

traditional machine learning classifier, where the model output is

specifically constrained to the task at hand, such as a leaf node for

decision trees, or a probability vector for neural networks, gener-

ative models provide their answer as a sequence of words, which

is then interpreted by the user. LLMs can be instructed to provide

this answer in potentially infinite ways, and due to the way they

function, the chosen answer format can affect the performance of

the generative classifier itself.

In our system, we decided to generate answers in the form of a

JSON array, with one item for each attribute pair from the input

data.We then ask the LLM to provide the semantic equivalence level

for each pair as a 5-point scale (very low, low, medium, high, very
high), and set a cutoff value to map each value to a binary {match,
no match} decision, e.g., consider high and very high answers as a

match, everything else as no match. While this choice may seem

counter-intuitive, the experimental results show that it performs

better than using a simple binary answer format, as it allows the

LLM to ignore some of the irrelevant differences between attributes

mentioned in Section 3. We also instruct the LLM to write a short

paragraph explaining the given answer, that we use to investigate

and remediate errors. Similarly to the retrieval step, the system

can use the development set to choose the optimal combination of

prompt template, attribute metadata, output format, and LLM.

Table 1: Dataset statistics

Development Set Test Set

Source Attributes 400 999

Source Attributes
w/match 123 (30.8%) 342 (34.2%)

Matching Pairs 129 354

Product Types 81 85

The LLM services are provided through the AWS Bedrock service.

Jinja is again used as the main templating engine for injecting

the input data into the prompts, as well as processing the LLM

answers. Prompt templates are persisted in Amazon DynamoDB
4

for analytics and reporting purposes.

5 Experiment
5.1 Dataset
We created a new product schema matching and duplicate detec-

tion dataset for the specific purpose of evaluating our system on

data that is close to production. The dataset is made up of 1, 399

source attributes, describing properties of 85 different types of prod-

ucts, ranging from electronics (e.g., computers and air conditioners),

clothing (e.g., sweaters), food, and furniture, with approximately

16.5 source attributes per product type. The dataset is split into two

sets: a development set containing 400 source attributes, which we

use to tune the model parameters, and a test set with 999 source

attributes, used to measure the performance. Each source attribute

in the dataset was manually mapped with the semantically equiv-

alent attributes in our catalog (target) schema, if any exist, or is

left empty in case no suitable match is found. The target schema

contains on average ≈ 190 attributes per product type.

The source attributes come from an initiative to expand our cata-

log schema, during which new candidate attributes were proposed

and modeled with the necessary metadata. We sampled this set

using stratified sampling to ensure that all product types and data

types are represented. We then manually labeled the attributes,

following a two-step strategy: first, the source attributes were sent

to our organization’s data labeling team, who were asked to match

each source attribute against the semantically equivalent attributes

in the target schema, according to the definition described in Sec-

tion 3. Then, the labeled data was manually inspected and reviewed

with domain and data modeling experts, and the labels were cor-

rected in case of errors. We chose this strategy because it represents

a good compromise between labeling effort and quality, and also

allows us to use the original labels as an additional baseline for our

approach. Finally, we split the data in development and test sets

using the same stratification setup as before. A training split is not

necessary in this case, since our approach does not need model

training.

Detailed dataset statistics are presented in Table 1, which de-

scribes the total number of source attributes, the number of source

attributes with at least onematching attribute in our catalog schema,

4
https://aws.amazon.com/pm/dynamodb/

https://aws.amazon.com/pm/dynamodb/

LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada Andrea Iovine, Yunhan Huang, Melvin Monteiro, Mohamed Yakout, and Sedat Gokalp

The attribute {source attribute } for {product type} product type is described as : { source attribute description }. It has the following enumeration

values : {...}. As an ontologist :

1. Carefully review the attribute description of {source attribute } against every target attribute (enclosed in the target_attributes XML tag)

2. Determine if any of the target attributes are an exact semantically equivalent match for the {source attribute } given the attribute description

and the product type {product type }.

For attributes to be considered semantically equivalent they must have the following properties :

1. The attributes can be used interchangeably to express the exact same characteristic considering the product type {product type }.

2. The attribute must be at the same level of granularity and not be a more specific concept for the item. For example, an attribute describing a

characteristic of a specific part of an item (e .g. pocket_material) would not be an exact match with an attribute that is either describing the

whole product or is unclear about what part of the product it is describing (e .g. material) .

Answer as a list of JSON objects , with each struct containing the following fields the input_attribute field , the target_attribute field , a

semantic_equivalence_level field and a reasoning field (string) explaining your reasoning for the selecting the level . Ensure that the response

is a list of JSON structs and encode quotes within JSON text . If no target attributes are available , provide an empty list ([]) .

Apply the below rules when constructing the response:

1. semantic_equivalence_level is based on degree of semantic equivalence (very_high, high, medium, low and very_low) with very_high meaning exact

semantic equivalence .

<target_attributes>

<target_attribute>

<name>...</name><description>...</description><values>...</values>

</target_attribute>...

</target_attributes>

Figure 3: Full prompt used in the LLM classification step

the number of individual matching (source, target) attribute pairs,

and the number of product types included in each split.

5.2 Experimental Setup
We evaluate the performance of our approach in a realistic setting

by building a benchmark environment that is close to real operating

conditions. The main task consists of processing new candidate

product attributes proposed for a given product type, and determine

whether they already exist in our catalog schema, or alternatively, if

they are net-new. In this case, we are using product schema match-

ing to intercept duplicate attributes and prevent them from being

added to our schema: given a source attribute, if a semantically

equivalent attribute is found in the schema, it is marked as a dupli-

cate. If no match is detected by the system, the source attribute is

considered as net-new.

The first stage of the setup is tuning, during which we iden-

tify the optimal combination of configuration parameters for our

approach by running a grid-search on the development set. Specifi-

cally, we select the combination of parameters that obtains the best

development set performance wrt. our goal metric. For the retrieval

step, we adjust the quantity and content of the text representation

templates 𝑇𝑘 , the quantity and type of embedding models 𝐸𝑘 , the

number of candidate target attributes 𝐾𝑘 , and the minimum similar-

ity threshold 𝑆𝑘 . For the classification step, we adjust the amount

of attribute metadata provided to the LLM (name+description vs.

name+description+example values) and the cutoff level for LLM an-

swers (very high vs. high). Finally, we run the model with the best

combination of parameters on the test set, in order to measure its

unbiased performance. We repeat this process across five founda-

tion models available in the Bedrock service: Claude Sonnet 3, 3.5,

3.5 v2, Mistral Large, and Mistral Large 2, in order to further prove

the generality of the results. We chose these models as they are the

largest and more recent currently offered by the Bedrock service.

For all models, we set a temperature of 0, and a top-P of 0.999, to

minimize the risk of inconsistencies in the answers.

5.2.1 Metrics. Wemeasured the performance on two tasks: product
schema matching, and duplicate detection.

Product Schema Matching: Given a source attribute and a

product type, the goal is to find all and only the attributes in the

target schema that are semantically equivalent to it. Aside from

finding duplicates, schema matching can be used also in other ways,

such as consolidating the product information spread across multi-

ple schemas. Performance is reported using the F1-score derived

from the information retrieval definition of precision and recall:

𝑃 =
|𝑀𝑝𝑟𝑒𝑑 ∩𝑀𝑔𝑡 |

|𝑀𝑝𝑟𝑒𝑑 |
, 𝑅 =

|𝑀𝑝𝑟𝑒𝑑 ∩𝑀𝑔𝑡 |
|𝑀𝑔𝑡 |

, 𝐹1 =
2𝑃𝑅

𝑃 + 𝑅 , (3)

where 𝑀𝑝𝑟𝑒𝑑 is the set of attribute pairs that are predicted as se-

mantically equivalent by the system, and𝑀𝑔𝑡 is the set of ground

truth matching pairs from the dataset.

Duplicate Detection: given a source attribute and a product

type, the goal is to determine whether it is net-new, or it is a du-

plicate, i.e., a semantically matching attribute exists in the target

schema. This is simplification of schema matching, equivalent to a

binary classification task, in which the positive class is assigned to

duplicate attributes, and the negative class is assigned to net-new

ones. We chose to report the binary classification 𝐹2-score as our

main metric, since false negatives (i.e., introducing a duplicate at-
tribute) pose a significantly higher risk compared to false positives

(i.e., rejecting a net-new attribute). This is the main metric for which

the system is optimized during the tuning stage.

5.2.2 Experimental Configurations. The full version of our approach,
featuring the multi-retrieval and 5-point answer format, is com-

pared against two variants: single-retrieval, and binary-answer. The
single-retrieval variant only allows the use of one text representation

Effective Product Schema Matching and Duplicate Detection with Large Language Models LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada

Table 2: Detailed results of the experiments on the test set

Model Full Approach single-retrieval binary-answer human
DD-𝐹2 PSM-𝐹1 DD-𝐹2 PSM-𝐹1 DD-𝐹2 PSM-𝐹1 DD-𝐹2 PSM-𝐹1

Claude Sonnet 3 84.44% 70.35% 83.47% 71.90% 85.48% 64.62% 81.82% 79.75%

Claude Sonnet 3.5 88.51% 74.14% 84.19% 75.58% 82.27% 75.80% - -

Claude Sonnet 3.5 V2 88.15% 74.42% 85.14% 76.46% 84.92% 77.32% - -

Mistral Large 90.20% 76.26% 86.02% 76.75% 86.26% 78.12% - -

Mistral Large 2 87.55% 67.94% 85.33% 71.29% 85.71% 74.87% - -

Avg. Difference - - +2.94% -1.77% +2.85% -1.52% - -

template and embedding model during the retrieval phase. Specif-

ically, we use the template and embedding model that achieves

the best performance on the development set. The binary-answer
variant of the approach replaces the answer format of the LLM

classifier with a binary one. Finally, the human baseline is obtained

from the raw annotations produced by our internal data labeling

team, as described in Section 5.1, which approximates the average

performance of non-domain expert humans.

5.3 Experimental Results
Table 2 describes the results of the experiment on the test set, re-

porting, for each approach and foundation model, the performance

achieved for both tasks described above. Specifically, the DD-𝐹2
columns report the F2-score of the Duplicate Detection task, and

the PSM-𝐹1 columns report the F1-score for the Product Schema

Matching task. The Avg. Difference row compares the average score

of the full approach against the variants. Of course, the model col-
umn does not apply to the human baseline. We also measured the

execution time of our approach on the test set: on average, the

retrieval step was completed in 2 minutes, while the classification

step was completed in 20 minutes.

5.3.1 Duplicate Detection Task. The results show that our approach

demonstrated good levels of performance for the Duplicate Detec-

tion task, especially in conjunction with the Mistral Large model,

which scored the highest overall DD-𝐹2 (90.2%). In fact, this config-

uration was able to correctly identify more than 95% of duplicate

source attributes in the test set. Compared to the single-retrieval
and binary-answer variants, the full version of our approach is able

to optimize our main goal metric, with an average uplift of ≈ 2.9%

in 𝐹2 across the five LLMs.

Themulti-retrieval strategy allows our approach to retrieve more

relevant target attributes, while the 5-point answer format induces

the LLM to be more flexible in assessing whether two attributes

are semantically matching, compared to a purely binary answer

format. In fact, during the tuning phase we observed that setting the

cutoff answer to high almost always yields better performance than

very high, meaning that the LLM can ignore negligible differences

between matching attributes.

Themost surprising result however is that our approach achieved

higher DD-𝐹2 than the human baseline in all configurations. The

main reason is the low recall of the human annotators, who missed

a large amount of matching attribute pairs. This is understand-

able: the schema matching task involves exhaustively comparing a

large amount of attribute pairs, and there is a non-negligible risk

that humans can miss some of them. On the other hand, our auto-

mated solution is able to thoroughly navigate the search space and

systematically make thousands of comparisons.

5.3.2 Product Schema Matching Task. In this case, results show

that the binary-answer and single-retrieval variants often perform

better than the full approach, with the best overall PSM-𝐹1 being
78.12%. Looking at the results in detail, we observed that the full

approach tends to detect more attribute pairs as matching com-

pared to the other variants, leading to a 1.77% decrease in PSM-𝐹1.
This is consistent with the finding that the multi-retrieval strategy

and 5-point answer format optimized for DD-𝐹2 performance. The

binary-answer variant obtained the best overall performance, being

only 1.6% below the human baseline, proving that our system can

also perform competitively with human annotators when config-

ured accordingly. By further analyzing the results, we however

discovered that the precision-recall balance of the two differs signif-

icantly: as previously mentioned, human annotators lack in recall

(72.31%), but make up with very high precision (88.89%). On the

contrary, our best result from the binary-answer variant leads in
recall (82.21%) but suffers from lower precision (74.43%). The full

approach features even wider gaps between precision and recall,

which explains the lower 𝐹1.

In summary, the results prove that our approach performs ad-

mirably well even in the more complex product schema matching

task, but also that there is still a wide margin for improvement,

especially in reducing false matches. The most common cause of

false positives can be attributed to partial information overlap being

mistaken by the LLM as full duplication (e.g., confusing the primary

product material with the material of one of its components). An

example is found in the air conditioner domain, where the sys-

tem matched the net-new source attribute Energy Efficiency Ratio
with the target attribute Seasonal Energy Efficiency Ratio, which are

two separate albeit related measurements of the efficiency of the

product. Because the LLMs used in this experiment are trained on

general-purpose tasks, they can sometimes overlook nuanced mod-

eling differences such as the one above, even when domain-specific

instructions are provided as part of the prompt text.

5.3.3 Comparison across LLMs. As expected, the results of the ex-
periment are relatively stable across the five foundation models

included in the experiment: the full approach and the binary-answer
variant report the highest DD-𝐹2 and PSM-𝐹1 respectively in four

out of five models. Indeed, Claude Sonnet v3 represents an outlier,

LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada Andrea Iovine, Yunhan Huang, Melvin Monteiro, Mohamed Yakout, and Sedat Gokalp

sporting slightly lower performance than the others, which is un-

derstandable since it is a significantly older model. On the other

hand, the gap between Claude Sonnet v3.5 and Mistral Large is

much closer, with the latter being the best performer for both tasks.

Overall, these results further support the validity and generality of

the findings presented in this section, and also confirm that state-of-

the-art pre-trained LLMs are capable of understanding the concepts

behind product catalog schemas, and detecting semantically-rich

relationships between them.

5.4 Online Experiment
The experimental results described in Section 5.3 were instrumen-

tal in selecting the configuration of the product schema matching

system with the highest duplicate attribute detection performance.

Accordingly, we decided to proceed with the full version of our

approach, i.e. with multi-retrieval and 5-point answer format, using

Mistral Large as the LLM for the classification step. We conducted

an online experiment, during which the approach was made avail-

able to internal users, to estimate how well the system can reduce

the time and effort required by human experts in making schema-

level decisions, thus improving efficiency. According to one of our

senior ontologists in fact, it takes on average 10 minutes to check a

new proposed attribute against the existing catalog schema, and

determine whether it is a duplicate.

The online experiment involved an unlabeled set of 687 candi-

date attributes, proposed for 85 product types, as well as a group

of ontologists from our organization. The system was able to de-

termine that 319 (46.4%) of these candidate attributes already exist

in our schema, taking less than one hour of total processing time.

Because the system meets our objective recall level for automation

(> 95%), the only remaining step is to confirm that the duplicate

attribute pairs are correct, which humans can perform more effi-

ciently and accurately. During the experiment, we measured that it

takes approximately two minutes for an ontologist to verify that a

pair of attributes is truly semantically equivalent.

Accordingly, we estimate that our product schema matching

system would reduce the amount of ontologist time from 687 ×
(10 minutes) = 114.5 hours to only 319× (2 minutes) ≈ 10.6 hours,

i.e., a 91% reduction. This is an excellent result, which proves that

LLMs can help domain experts make faster and more accurate

decisions, reducing the time needed to filter out duplicate content,

and discover net new attributes from other schemas. Furthermore,

this would enable an e-commerce service to react to changes in

the product space much faster, resulting in a more comprehensive,

accurate, and enjoyable shopping experience for buyers.

6 Conclusion and Future Work
In this paper, we presented an application that combines semantic

search and large language models for the product schema matching

and duplicate detection tasks. Through an experiment, we evaluated

the performance of our approach on a real e-commerce problem, i.e.,
identifying and filtering out duplicate attributes, using a purpose-

built ground truth dataset to simulate realistic operating conditions

on a multitude of product types. Experimental results show that

our approach outperforms human annotators in the duplicate at-

tribute detection task with 90.2% 𝐹2, and also achieves near-human

performance in the product schema matching task with 78.12% 𝐹1.

Features such as multi-retrieval and the fine-grained answer format

allowed the system to identify and remove even more duplicate

attributes, although with a small cost in terms of precision. Through

an online experiment, we found that our approach can reduce the

time that ontologists need to dedicate to duplicate detection by up

to 91%.

However, there are still some limitations that need to be pointed

out. As mentioned in Section 5.3, the system outperforms humans

in terms of recall, but precision still poses a significant obstacle, as it

tends to miss the more nuanced differences between non-matching

attributes. Of course, partial matches and other cases of complex

relationships described in Section 3 are also often mistaken as dupli-

cates, which is expected, and highlights the difficulty of the product

schema matching task. Therefore, solving the precision problem

constitutes an interesting avenue for future work, for which we

propose the integration of in-context learning strategies, such as

those discussed in [6, 12, 15]. In-context learning can be especially

useful in teaching the LLM how to handle the most complex cases

by dynamically retrieving relevant labeled examples from a knowl-

edge base. Integrating a confidence scoring mechanism can also

help further reduce the level of human intervention required, by

sending only the attribute pairs with low confidence to manual

review.

Output consistency is another limitation observed during our

experiments: small differences in the wording of a prompt can some-

times induce LLMs to change their answer unexpectedly, which

is a consequence of the probabilistic nature of their output. The

problem is amplified by the use of batch prompting, which forces

the LLM to reason over multiple attribute pairs at once, meaning

that the answer given to a pair also is influenced by the other pairs

in the same batch. As future work, we propose to investigate ap-

proaches to reduce the inconsistency of the model output, e.g., by
using ensemble models, or employing dedicated models fine-tuned

for the product schema matching task.

Finally, we will continue to iterate with more comprehensive

experiments, which will include a larger variety of retrieval and

classification parameters, as well as text representation templates,

embedding models, and LLMs. We will also consider expanding

the scope of the system to match other languages and/or types of

product entities. Another avenue for future work is the detection of

complex relationships, such as partial overlaps between attributes.

Acknowledgments
We would like to thank Eric Kauz for sharing his expertise in the

product schema domain, which was instrumental in writing the

definition, prompt engineering, and reviewing the dataset. We are

also thankful to Simon Hartmann, Klevis Ramo, Jona Neumeier,

Arsh Kumar, and Hasan Turalic for the design and implementa-

tion of the overall infrastructure, which was used during the on-

line experiment, as well as all the ontologists from the Ontology

team that participated. A special mention must also be given to

the Global Catalog Operations team, which annotated the dataset

used in the experiment. Finally, we thank Grant Galloway, Arjun

Bakshi, Sharadha Viswanathan, Tarang Chugh, and Tarik Arici for

providing valuable feedback during the writing of this paper.

Effective Product Schema Matching and Duplicate Detection with Large Language Models LLM4ECommerce Workshop at KDD ’25, August 4, 2025, Toronto, ON, Canada

References
[1] Ali, A., Rasool, G., and Pathania, A. Antecedents for success of e-commerce

platforms: an investigative approach. Int. J. Inf. Technol. Manag. 16, 4 (2017),

376–390.

[2] Amini, R., Norouzi, S. S., Hitzler, P., and Amini, R. Towards Complex Ontology

Alignment using Large Language Models, July 2024. arXiv:2404.10329.

[3] Chen, J., Dong, H., Chen, J., and Horrocks, I. Ontology Text Alignment:

Aligning Textual Content to Terminological Axioms. In Frontiers in Artificial
Intelligence and Applications. IOS Press, Oct. 2024.

[4] Chugh, T., and Zambre, D. ASTRA: Automatic Schema Matching using Machine

Translation. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: EMNLP 2024 - Industry Track, Miami, Florida, USA, November
12-16, 2024 (2024), Association for Computational Linguistics, pp. 1237–1244.

[5] Ehrig, M. Ontology Alignment: Bridging the Semantic Gap. Springer Science &
Business Media, Dec. 2006. Google-Books-ID: nxzBZonEF50C.

[6] Fan, M., Han, X., Fan, J., Chai, C., Tang, N., Li, G., and Du, X. Cost-Effective In-

Context Learning for Entity Resolution: A Design Space Exploration. In 40th IEEE
International Conference on Data Engineering, ICDE 2024, Utrecht, The Netherlands,
May 13-16, 2024 (2024), IEEE, pp. 3696–3709.

[7] Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., Guo, Q., Wang,

M., and Wang, H. Retrieval-Augmented Generation for Large Language Models:

A Survey. CoRR abs/2312.10997 (2023). arXiv: 2312.10997.

[8] He, Y., Chen, J., Antonyrajah, D., and Horrocks, I. BERTMap: A BERT-

Based Ontology Alignment System. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022
(2022), AAAI Press, pp. 5684–5691.

[9] He, Y., Chen, J., Dong, H., and Horrocks, I. Exploring Large Language Models

for Ontology Alignment. In Proceedings of the ISWC 2023 Posters, Demos and
Industry Tracks: From Novel Ideas to Industrial Practice co-located with 22nd Inter-
national Semantic Web Conference (ISWC 2023), Athens, Greece, November 6-10,

2023 (2023), vol. 3632 of CEUR Workshop Proceedings, CEUR-WS.org.

[10] Hertling, S., and Paulheim, H. OLaLa: OntologyMatching with Large Language

Models. In Proceedings of the 12th Knowledge Capture Conference 2023 (Pensacola
FL USA, Dec. 2023), ACM, pp. 131–139.

[11] Li, Y., Li, J., Suhara, Y., Doan, A., and Tan, W.-C. Deep Entity Matching with

Pre-Trained Language Models. Proc. VLDB Endow. 14, 1 (2020), 50–60.
[12] Liu, X.,Wang, R., Song, Y., andKong, L. GRAM:Generative Retrieval Augmented

Matching of Data Schemas in the Context of Data Security. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
2024, Barcelona, Spain, August 25-29, 2024 (2024), ACM, pp. 5476–5486.

[13] Otero-Cerdeira, L., Rodríguez-Martínez, F. J., and Gómez-Rodríguez, A.

Ontology matching: A literature review. Expert Syst. Appl. 42, 2 (2015), 949–971.
[14] Peeters, R., and Bizer, C. Dual-Objective Fine-Tuning of BERT for Entity

Matching. Proc. VLDB Endow. 14, 10 (2021), 1913–1921.
[15] Peeters, R., Steiner, A., and Bizer, C. Entity Matching using Large Language

Models. In Proceedings 28th International Conference on Extending Database
Technology, EDBT 2025, Barcelona, Spain, March 25-28, 2025 (2025), OpenProceed-
ings.org, pp. 529–541.

[16] Rahm, E., and Bernstein, P. A. On matching schemas automatically. VLDB
journal 10, 4 (2001), 334–350.

[17] Shieh, E., Simhon, S., Aluri, G., Papachristoudis, G., Yakut, D., and Raghu, D.

Attribute Similarity and Relevance-Based Product Schema Matching for Targeted

Catalog Enrichment. In 2021 IEEE International Conference on Big Knowledge,
ICBK 2021, Auckland, New Zealand, December 7-8, 2021 (2021), IEEE, pp. 261–270.

[18] Tu, J., Fan, J., Tang, N., Wang, P., Li, G., Du, X., Jia, X., and Gao, S. Unicorn: A

Unified Multi-tasking Model for Supporting Matching Tasks in Data Integration.

Proc. ACM Manag. Data 1, 1 (2023), 84:1–84:26.
[19] Univ Ctr of El Bayadh, Inst. Science and Technology, Algeria, Ardjani,

F., Bouchiha, D., and Malki, M. Ontology-Alignment Techniques: Survey and

Analysis. International Journal of Modern Education and Computer Science 7, 11
(Nov. 2015), 67–78.

	Abstract
	1 Introduction
	2 Related Work
	3 Task Definition
	4 Proposed Approach
	4.1 Retrieval Step
	4.2 LLM Classification Step

	5 Experiment
	5.1 Dataset
	5.2 Experimental Setup
	5.3 Experimental Results
	5.4 Online Experiment

	6 Conclusion and Future Work
	Acknowledgments
	References

